CEPC2007 CHEMICAL ENGINEERING THERMODYNAMICS (3-0-0)

Overall course Objective: The objective of the course is to introduce the students to thermodynamic laws and thermodynamic properties of solutions and pure fluids. Explaining the importance equations/rule/ like Gibbs-Duhem equation, Redlich-Kwong equation, Lewis-Randall rule. Relating chemical reaction equilibria studies with thermodynamic properties of systems.

Course Outcomes:

- CO1: Apply the first and second laws of thermodynamics to chemical processes.
- CO2: Compute the properties of ideal and real gas mixtures
- CO3: Estimate heat and work requirements for industrial processes.
- CO4: Determine thermodynamic properties of gaseous mixtures and solutions.
- CO5: Determine equilibrium constant and composition of product mixture for single and multiple reactions.

COs	POs											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	2	1	-	-	-	-	-	-	-	-	-
CO2	2	3	2	2	1	-	-	-	-	-	-	-
CO3	2	2	3	3	2	-	-	-	-	-	-	-
CO4	2	2	2	3	2	-	-	-	-	-	-	-
CO5	2	2	3	2	1	-	-	-	-	-	-	-

Course Articulation Matrix

Module I: (12 hr)

The first law of thermodynamics, the thermodynamic state and state function, constantvolume and constant pressure processes.

Properties of pure fluids: PVT behavior of pure substances, virial equations of state, theideal gas, applications of virial equations, cubic equation of state, theorem of corresponding states. Second Law: Entropy, work function, phase rule, introduction to third law.

Module II: (10 hr)

Criteria of phase equilibrium, ideal solutions (use of Raoult's) law, generation of Pxy andTxy diagram for ideal solution.

Non-ideal behavior, partial properties, Gibbs-Duhem equation, calculation of fugacitycoefficient using generalized correlation, excess Gibbs energy, Lewis-Randall rule, activitycoefficient for VLE data.

Module III: (8 hr)

Solution thermodynamics: Thermodynamic properties and VLE from equation of state, properties of fluid mixtures using Redlich-Kwong equation of states.

Module IV: (8 hr)

Chemical reaction equilibrium: Criteria to chemical reactions, Gibbs energy changeequilibrium constant, effect of temperature, calculation for single reaction in homogeneous and heterogeneous systems.

Books:

- 1. Introduction to Chemical Engineering Thermodynamics, 7th ed. by J M Smith, H CVan Ness, and M M Abbott, McGraw-Hill.
- 2. Textbook of Chemical Engineering Thermodynamics, 2nd ed. by K V Narayanan,PHI, 2013.
- 3. Chemical, Biochemical, and Engineering Thermodynamics, 4th ed. by S I Sandler, Wiley.
- 4. Engineering and Chemical Thermodynamics, 2nd ed. by M D Koretsky, Wiley.
- 5. Introductory Chemical Engineering Thermodynamics, 2nd ed. by J R Elliott and C TLira, PHI.
- 6. Fundamentals of Chemical Engineering Thermodynamics, 1st ed. by T Matsoukas, PHI.
- 7. Chemical Engineering Thermodynamics by Y V C Rao, Orient Blackswan.

Digital learning resources:

1. Chemical engineeringthermodynamics by Prof. Sasidhar Gumma, Department of Chemical Engineering, IIT Guwahati

(Link: <u>https://nptel.ac.in/courses/103/103/103103144/</u>)

2. Chemical Engineering Thermodynamics by Prof. Sandip Roy, Department of ChemicalEngineering, IIT Bombay

(Link: <u>https://nptel.ac.in/courses/103/101/103101004/</u>)